Thermochemistry Guide
Thermochemistry studies energy changes in chemical reactions and physical transformations, bridging chemistry and thermodynamics. This guide explores energy flow, enthalpy, Hess’s Law, and practical applications with visualizations.
Energy Changes
Energy changes determine whether reactions are exothermic (heat-releasing) or endothermic (heat-absorbing).
Exothermic Reactions
Release heat (\( q < 0 \)). Example: propane combustion:
Heat flow: \( q = m c \Delta T \).
Endothermic Reactions
Absorb heat (\( q > 0 \)). Example: calcium carbonate decomposition:
Heat Capacity
For 50 g water heated from 25°C to 75°C (\( c = 4.18 \, \text{J/g°C} \)):
Internal Energy
\( \Delta E = q + w \), where \( w = -P \Delta V \). At constant volume, \( \Delta E = q_v \).
Enthalpy
Enthalpy (\( H = E + PV \)) measures heat at constant pressure:
Standard Enthalpy of Formation
For \( \ce{2H2 + O2 -> 2H2O} \), \( \Delta H_f^\circ(\ce{H2O}) = -285.8 \, \text{kJ/mol} \):
Calorimetry
Bomb calorimeter: \( q_{\text{rxn}} = -C_{\text{cal}} \Delta T \). For 1 g glucose (\( \Delta T = 2.8°C \), \( C_{\text{cal}} = 10 \, \text{kJ/°C} \)):
Phase Change
For 36 g water vaporization (\( \Delta H_{\text{vap}} = 40.7 \, \text{kJ/mol} \)):
Hess’s Law
\( \Delta H_{\text{total}} = \sum \Delta H_{\text{steps}} \). Example: \( \ce{C + O2 -> CO2} \):
Visualizations
Heat changes in exothermic vs. endothermic reactions.
Applications
Energy
Octane combustion: \( \Delta H = -5470 \, \text{kJ/mol} \).
Biology
Glucose oxidation: \( \Delta H = -2803 \, \text{kJ/mol} \).
Industry
Cement production: \( q = 178 \, \text{kJ} \) for 100 g \( \ce{CaCO3} \).
Environment
Methane oxidation: \( \Delta H = -890 \, \text{kJ/mol} \).