Stoichiometry Guide
Stoichiometry quantifies chemical reactions using balanced equations, rooted in the conservation of mass. This MathMultiverse guide explores mole concepts, ratios, limiting reactants, and applications with visualizations.
Mole Concept
A mole is \( 6.022 \times 10^{23} \) entities (Avogadro’s number, \( N_A \)). Molar mass connects moles to grams.
Moles: \( n = \frac{\text{mass}}{\text{molar mass}} \). For 36 g \( \ce{H2O} \):
Molecules: \( 0.5 \, \text{mol} \, \ce{N2} \times N_A = 3.011 \times 10^{23} \).
Mole Ratios
For \( \ce{CH4 + 2O2 -> CO2 + 2H2O} \), ratios dictate proportions.
From 16 g \( \ce{CH4} \):
Volume \( \ce{O2} \) for 8 g \( \ce{CH4} \):
Limiting Reactants
For \( \ce{C2H5OH + 3O2 -> 2CO2 + 3H2O} \), with 46 g \( \ce{C2H5OH} \), 80 g \( \ce{O2} \):
Percent yield for 60 g \( \ce{CO2} \):
Visualizations
Reaction Yield
Applications
- Ammonia Synthesis: \( \ce{N2 + 3H2 -> 2NH3} \), 28 g \( \ce{N2} \) yields 34.06 g \( \ce{NH3} \).
- Drug Synthesis: Aspirin from 138 g \( \ce{C7H6O3} \) yields 180.16 g.
- CO2 Emissions: 114 g octane produces 352.08 g \( \ce{CO2} \).
- Rockets: 32 g \( \ce{O2} \) needs 44.828 L \( \ce{H2} \).