Relativity
Einstein’s special relativity, introduced in 1905, reshapes our understanding of space and time. At MathMultiverse, we explore its core concepts—time dilation, length contraction, relativistic mass, and energy-mass equivalence—through clear formulas, examples, and visualizations.
Key Concepts
Time Dilation
Time slows for a moving object:
\[ t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}} \]
Length Contraction
Objects contract along the direction of motion:
\[ L = L_0 \sqrt{1 - \frac{v^2}{c^2}} \]
Relativistic Mass
Mass increases with speed:
\[ m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \]
Energy-Mass Equivalence
Mass converts to energy:
\[ E = m c^2 \]
Where \( c = 3 \times 10^8 \, \text{m/s} \).
Examples
Time Dilation
Spaceship at \( v = 0.8c \), \( t_0 = 10 \, \text{s} \):
\[ t = \frac{10}{\sqrt{1 - 0.64}} \approx 16.67 \, \text{s} \]
Length Contraction
Spaceship \( L_0 = 100 \, \text{m} \), \(ვ
Relativistic Mass
Object with \( m_0 = 2 \, \text{kg} \), \( v = 0.9c \):
\[ m \approx \frac{2}{\sqrt{0.19}} \approx 4.59 \, \text{kg} \]
Energy-Mass Equivalence
Mass \( m = 1 \, \text{kg} \):
\[ E = 1 \cdot 9 \times 10^{16} = 9 \times 10^{16} \, \text{J} \]
Visualizations
Time Dilation vs. Velocity
Applications
- GPS: Time dilation correction, \( \Delta t \approx 8.315 \times 10^{-11} \, \text{s} \) for \( v = 3.87 \times 10^3 \, \text{m/s} \).
- Particle Accelerators: Proton mass, \( m \approx 1.18 \times 10^{-26} \, \text{kg} \) at \( v = 0.99c \).
- Space Travel: Length contraction, \( L \approx 35.7 \, \text{m} \) for \( L_0 = 50 \, \text{m} \), \( v = 0.7c \).
- Nuclear Energy: Energy from \( \Delta m = 0.001 \, \text{kg} \), \( E = 9 \times 10^{13} \, \text{J} \).
- Muon Decay: Lifetime, \( t \approx 1.11 \times 10^{-5} \, \text{s} \) at \( v = 0.98c \).