Recurrence Relations

Recurrence relations define sequences recursively, expressing each term as a function of previous ones. At MathMultiverse, we explore their role in combinatorics, algorithms, and more through clear examples and visualizations.

Types and Solutions

Definition

General form: \( a_n = f(a_{n-1}, a_{n-2}, \ldots) \).

Linear Homogeneous

\( a_n = c_1 a_{n-1} + c_2 a_{n-2} \):

\[ r^2 - c_1 r - c_2 = 0 \]

Non-Homogeneous

\( a_n = c_1 a_{n-1} + f(n) \).

Generating Functions

Fibonacci: \( G(x) = \frac{x}{1 - x - x^2} \).

First-Order

\( a_n = r a_{n-1} \):

\[ a_n = a_0 r^n \]

Examples

Fibonacci

\( a_n = a_{n-1} + a_{n-2} \), \( a_0 = 0 \), \( a_1 = 1 \):

\[ a_6 = 8 \]

Geometric

\( a_n = 4 a_{n-1} \), \( a_0 = 1 \):

\[ a_3 = 4^3 = 64 \]

Non-Homogeneous

\( a_n = 3 a_{n-1} + 2 \), \( a_0 = 1 \):

\[ a_n = 2 \cdot 3^n - 1 \]

Second-Order

\( a_n = 5 a_{n-1} - 6 a_{n-2} \), \( a_0 = 1 \), \( a_1 = 4 \):

\[ a_n = 2^n \]

Tiling

2×n board: \( a_n = a_{n-1} + a_{n-2} \).

Visualizations

Fibonacci Sequence

Applications

  • Population Growth: Fibonacci model for rabbit populations.
  • Algorithm Analysis: Merge sort, \( T(n) = 2 T(n/2) + n \).
  • Combinatorics: Derangements, \( !n = (n-1) [!(n-1) + !(n-2)] \).
  • Finance: Compound interest, \( a_n = (1 + r) a_{n-1} \).
  • Physics: Fibonacci in phyllotaxis patterns.