Polynomial Approximation: A Comprehensive Guide
Polynomial approximation uses polynomials to represent complex functions, simplifying computations in numerical analysis. Polynomials are easy to evaluate, differentiate, and integrate, making them ideal for approximating functions like \( e^x \), \( \sin(x) \), or non-elementary ones.
This MathMultiverse guide explores Taylor series, a key method, with examples, visualizations, and applications in computational mathematics.
Taylor Series
Approximates \( f(x) \) around \( a \):
Maclaurin series (\( a = 0 \)). Remainder:
Examples
\( e^x \) at \( x = 0 \)
Derivatives: \( f^{(n)}(x) = e^x \), \( f^{(n)}(0) = 1 \).
For \( x = 1 \), \( e \approx 2.7183 \):
- \( n=1 \): \( 1 + 1 = 2 \), error \( \approx 0.7183 \)
- \( n=4 \): \( 1 + 1 + 0.5 + 0.1667 + 0.0417 \approx 2.7083 \), error \( \approx 0.01 \)
\( \sin(x) \) at \( x = 0 \)
Derivatives cycle: \( 0, 1, 0, -1 \).
For \( x = \frac{\pi}{6} \), \( \sin\left(\frac{\pi}{6}\right) = 0.5 \):
- \( n=1 \): \( 0.5236 \), error \( \approx 0.0236 \)
- \( n=3 \): \( 0.5236 - 0.0239 \approx 0.4997 \), error \( \approx 0.0003 \)
\( \ln(1 + x) \) at \( x = 0 \)
Derivatives: \( f^{(n)}(x) = \frac{(-1)^{n-1} (n-1)!}{(1 + x)^n} \).
For \( x = 0.5 \), \( \ln(1.5) \approx 0.4055 \):
- \( n=4 \): \( 0.5 - 0.125 + 0.0833 - 0.0625 \approx 0.3958 \), error \( \approx 0.0097 \)
Taylor Approximation of \( e^x \)
Approximating \( e^x \) with Taylor series terms at \( x = 0 \).
Applications
Physics: Motion
Small oscillations, \( \sin(\theta) \approx \theta \):
Signal Processing
Linearize \( e^{j\omega t} \):
Numerical Solvers
Newton’s method:
Computer Graphics
Bezier curves: