\( \sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \), \( \cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)] \), \( \sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)] \)
📌 Inverse Trigonometry
Inverse Sine:
\( \sin^{-1} x = \theta \), where \( \sin \theta = x \)
Inverse Cosine:
\( \cos^{-1} x = \theta \), where \( \cos \theta = x \)
Inverse Tangent:
\( \tan^{-1} x = \theta \), where \( \tan \theta = x \)
Inverse Cosecant:
\( \csc^{-1} x = \sin^{-1} \left( \frac{1}{x} \right) \)
Inverse Secant:
\( \sec^{-1} x = \cos^{-1} \left( \frac{1}{x} \right) \)
Inverse Cotangent:
\( \cot^{-1} x = \tan^{-1} \left( \frac{1}{x} \right) \)
Range of Inverse Sine:
\( [-\frac{\pi}{2}, \frac{\pi}{2}] \)
Range of Inverse Cosine:
\( [0, \pi] \)
Range of Inverse Tangent:
\( (-\frac{\pi}{2}, \frac{\pi}{2}) \)
Derivative of Inverse Sine:
\( \frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}} \)
Derivative of Inverse Cosine:
\( \frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^2}} \)
Derivative of Inverse Tangent:
\( \frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2} \)