Master the mathematics of economics with these formulas for supply, demand, GDP, and more.
Advertisement
(Google AdSense will appear here)
Demand Function (Linear):
\( Q_d = a - bP \)
Supply Function (Linear):
\( Q_s = c + dP \)
Total Revenue:
\( TR = P \cdot Q \)
Average Revenue:
\( AR = \frac{TR}{Q} = P \) (perfect competition)
Marginal Revenue (Linear Demand):
\( MR = a - 2bQ \)
Total Expenditure:
\( TE = P \cdot Q \)
Consumer Surplus:
\( CS = \int_{P_e}^{\infty} Q_d(P) \, dP \) or \( CS = \frac{1}{2} (P_{\text{max}} - P_e) Q_e \) (linear)
Producer Surplus:
\( PS = \int_{-\infty}^{P_e} Q_s(P) \, dP \) or \( PS = \frac{1}{2} (P_e - P_{\text{min}}) Q_e \) (linear)
Total Surplus:
\( TS = CS + PS \)
Demand Shift (Parallel):
\( Q_d' = Q_d + k \) (where \( k \) is shift amount)
Supply Shift (Parallel):
\( Q_s' = Q_s + m \)
Price Elasticity of Demand:
\( E_d = \left| \frac{\%\ \Delta Q_d}{\%\ \Delta P} \right| = \left| \frac{\Delta Q_d / Q_d}{\Delta P / P} \right| \)
Point Elasticity of Demand:
\( E_d = \left| \frac{dQ_d}{dP} \cdot \frac{P}{Q_d} \right| \)
Price Elasticity of Supply:
\( E_s = \frac{\%\ \Delta Q_s}{\%\ \Delta P} = \frac{\Delta Q_s / Q_s}{\Delta P / P} \)
Point Elasticity of Supply:
\( E_s = \frac{dQ_s}{dP} \cdot \frac{P}{Q_s} \)
Income Elasticity of Demand:
\( E_I = \frac{\%\ \Delta Q_d}{\%\ \Delta I} = \frac{\Delta Q_d / Q_d}{\Delta I / I} \)
Cross-Price Elasticity of Demand:
\( E_{xy} = \frac{\%\ \Delta Q_x}{\%\ \Delta P_y} = \frac{\Delta Q_x / Q_x}{\Delta P_y / P_y} \)
Elasticity and Total Revenue:
\( \Delta TR = Q (1 + E_d) \Delta P \) (if \( E_d < -1 \), elastic; \( E_d = -1 \), unitary)
Arc Elasticity of Demand:
\( E_d = \left| \frac{(Q_2 - Q_1) / \left( \frac{Q_1 + Q_2}{2} \right)}{(P_2 - P_1) / \left( \frac{P_1 + P_2}{2} \right)} \right| \)
Elasticity of Linear Demand:
\( E_d = \left| \frac{b P}{a - bP} \right| \) (for \( Q_d = a - bP \))
Elasticity at Midpoint (Linear):
\( E_d = 1 \) when \( P = \frac{a}{2b} \)
Equilibrium Condition:
\( Q_d = Q_s \)
Equilibrium Price (Linear):
\( P_e = \frac{a - c}{d + b} \) (for \( Q_d = a - bP \), \( Q_s = c + dP \))
Equilibrium Quantity (Linear):
\( Q_e = a - b \left( \frac{a - c}{d + b} \right) \)
Price Ceiling Impact:
\( Q_d > Q_s \) if \( P_{\text{ceiling}} < P_e \)
Price Floor Impact:
\( Q_s > Q_d \) if \( P_{\text{floor}} > P_e \)
Deadweight Loss (Tax):
\( DWL = \frac{1}{2} t (Q_e - Q_t) \) (where \( t \) is tax per unit)
Tax Incidence (Demand):
\( \Delta P_d = t \cdot \frac{E_s}{E_s - E_d} \)
Tax Incidence (Supply):
\( \Delta P_s = t \cdot \frac{|E_d|}{E_s - E_d} \)
Subsidy Benefit (Consumers):
\( \Delta P_d = s \cdot \frac{E_s}{E_s + |E_d|} \) (where \( s \) is subsidy)
Subsidy Benefit (Producers):
\( \Delta P_s = s \cdot \frac{|E_d|}{E_s + |E_d|} \)
Market Clearing Time:
\( t = \frac{Q_d - Q_s}{k} \) (where \( k \) is adjustment speed)
Expenditure Approach:
\( GDP = C + I + G + (X - M) \)
Income Approach:
\( GDP = W + R + i + P \)
Nominal GDP:
\( GDP_{\text{nominal}} = \sum (P_t \cdot Q_t) \)
Real GDP:
\( GDP_{\text{real}} = \sum (P_{\text{base}} \cdot Q_t) \)
GDP Deflator:
\( \text{Deflator} = \frac{GDP_{\text{nominal}}}{GDP_{\text{real}}} \times 100 \)
GDP Growth Rate:
\( g = \frac{GDP_{t+1} - GDP_t}{GDP_t} \times 100 \)
Per Capita GDP:
\( GDP_{\text{per capita}} = \frac{GDP}{\text{Population}} \)
Output Gap:
\( \text{Gap} = GDP_{\text{potential}} - GDP_{\text{actual}} \)
Savings Rate:
\( s = \frac{S}{GDP} \) (where \( S = GDP - C - G \))
Multiplier Effect:
\( k = \frac{1}{1 - MPC} \) (where \( MPC \) is marginal propensity to consume)
Investment Multiplier:
\( \Delta GDP = k \cdot \Delta I \)
Inflation Rate:
\( \pi = \frac{CPI_{t+1} - CPI_t}{CPI_t} \times 100 \)
Consumer Price Index (CPI):
\( CPI = \frac{\sum (P_t \cdot Q_{\text{base}})}{\sum (P_{\text{base}} \cdot Q_{\text{base}})} \times 100 \)
Real Value Adjustment:
\( \text{Real Value} = \frac{\text{Nominal Value}}{1 + \pi} \)
Purchasing Power:
\( PP = \frac{1}{CPI} \times \text{Base Year Value} \)
Fisher Effect:
\( i = r + \pi^e \) (where \( i \) is nominal rate, \( r \) is real rate, \( \pi^e \) is expected inflation)
Inflation-Adjusted Return:
\( r_{\text{real}} = \frac{1 + r_{\text{nominal}}}{1 + \pi} - 1 \)
Quantity Theory of Money:
\( MV = PY \) (where \( M \) is money supply, \( V \) is velocity, \( P \) is price level, \( Y \) is real GDP)
Inflation from Money Growth:
\( \pi = g_M + g_V - g_Y \) (growth rates of \( M \), \( V \), \( Y \))
Cost-Push Inflation:
\( \pi = \frac{\Delta TC}{Q} \) (increase in total cost per unit output)
Demand-Pull Inflation:
\( \pi = f(\Delta AD) \) (function of aggregate demand increase)
Total Cost:
\( TC = FC + VC \)
Average Total Cost:
\( ATC = \frac{TC}{Q} \)
Average Fixed Cost:
\( AFC = \frac{FC}{Q} \)
Average Variable Cost:
\( AVC = \frac{VC}{Q} \)
Marginal Cost:
\( MC = \frac{\Delta TC}{\Delta Q} \)
Profit Maximization (Perfect Competition):
\( MC = MR = P \)
Profit:
\( \pi = TR - TC \)
Break-Even Quantity:
\( Q_{\text{break-even}} = \frac{FC}{P - AVC} \)
Cost Function (Linear):
\( TC = F + vQ \) (where \( F \) is fixed, \( v \) is variable cost per unit)
Economies of Scale:
\( ATC \) decreases as \( Q \) increases
Long-Run Average Cost:
\( LRAC = \frac{LRTC}{Q} \) (long-run total cost)
Utility Function:
\( U = U(x, y) \) (e.g., \( U = x^\alpha y^\beta \))
Marginal Utility:
\( MU_x = \frac{\partial U}{\partial x} \)
Law of Diminishing Marginal Utility:
\( \frac{\partial MU_x}{\partial x} < 0 \)
Budget Constraint:
\( P_x x + P_y y = I \)
Utility Maximization:
\( \frac{MU_x}{P_x} = \frac{MU_y}{P_y} \)
Demand Curve from Utility:
\( x = \frac{I}{P_x} \cdot \frac{MU_x}{MU_x + MU_y} \) (Cobb-Douglas example)
Indifference Curve Slope (MRS):
\( MRS = -\frac{MU_x}{MU_y} \)
Consumer Equilibrium:
\( MRS = \frac{P_x}{P_y} \)
Income Effect:
\( \Delta x_I = x(I + \Delta I) - x(I) \)
Substitution Effect:
\( \Delta x_S = x(P_x', I_{\text{comp}}) - x(P_x, I) \)
Total Effect:
\( \Delta x = \Delta x_S + \Delta x_I \)
Payoff (2-Player Game):
\( \pi_i = f(s_i, s_{-i}) \) (where \( s_i \) is strategy of player \( i \))
Nash Equilibrium Condition:
\( \pi_i(s_i^*, s_{-i}^*) \geq \pi_i(s_i, s_{-i}^*) \) for all \( s_i \)
Expected Payoff (Mixed Strategy):
\( E(\pi_i) = \sum p_j \pi_i(s_i, s_j) \) (where \( p_j \) is probability of strategy \( s_j \))
Minimax Value:
\( v_i = \min_{s_{-i}} \max_{s_i} \pi_i(s_i, s_{-i}) \)
Dominant Strategy Payoff:
\( \pi_i(s_i^*, s_{-i}) \geq \pi_i(s_i, s_{-i}) \) for all \( s_{-i} \)
Zero-Sum Game:
\( \pi_1 + \pi_2 = 0 \)
Best Response Function:
\( BR_i(s_{-i}) = \arg\max_{s_i} \pi_i(s_i, s_{-i}) \)
Cournot Duopoly Output:
\( q_i = \frac{a - c - b q_{-i}}{2b} \) (linear demand \( P = a - bQ \))
Bertrand Price Competition:
\( P_i = c \) (marginal cost in perfect competition)
Stackelberg Output (Leader):
\( q_1 = \frac{a - c}{2b} \) (linear demand)
Simple Linear Regression:
\( Y = \beta_0 + \beta_1 X + \epsilon \)
Slope (\( \beta_1 \)):
\( \beta_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} \)
Intercept (\( \beta_0 \)):
\( \beta_0 = \bar{Y} - \beta_1 \bar{X} \)
Coefficient of Determination (\( R^2 \)):
\( R^2 = 1 - \frac{\sum (Y_i - \hat{Y}_i)^2}{\sum (Y_i - \bar{Y})^2} \)
Standard Error of Estimate:
\( SE = \sqrt{\frac{\sum (Y_i - \hat{Y}_i)^2}{n - 2}} \)
t-Statistic:
\( t = \frac{\beta_1}{SE(\beta_1)} \)
F-Statistic (ANOVA):
\( F = \frac{\text{MSR}}{\text{MSE}} \) (regression vs. error mean squares)
Autocorrelation (Durbin-Watson):
\( DW = \frac{\sum (e_t - e_{t-1})^2}{\sum e_t^2} \) (where \( e_t \) is residual)
Log-Linear Model:
\( \ln Y = \beta_0 + \beta_1 \ln X + \epsilon \) (elasticity interpretation)
Time Series Growth Rate:
\( g = \frac{Y_{t+1} - Y_t}{Y_t} \) or \( g = e^{\beta_1} - 1 \) (log model)
Advertisement
(Google AdSense will appear here)